Temporal Dynamics of Methane Fluxes in a Temperate Urban Wetland

Karina V.R. Schäfer, Rajan Tripathee, Wagner Alcivar
Department of Biological Sciences, Rutgers University, Newark, NJ
Gil Bohrer, Liel Naor-Azrieli, William Mitsch, Paula Mouser
Department of Civil & Environmental Engineering & Geodetic Sciences
Ohio State University, Columbus, OH
Peter Jaffe, Matthew Reid
Department of Civil and Environmental Engineering, Princeton University, NJ
Rationale

Carbon, water and especially methane fluxes, particularly in urban ecosystems, are not well understood. Especially as urban centers are increasing and are large sources of CO$_2$ emissions, understanding these dynamics become crucial. Urban Ecology is an emerging field in dire need to understand structure and function of urban ecosystems and with it occurring biogeochemical fluxes.

Ecosystem function in urban areas depend not only on biotic or abiotic factors but also sociological and economic factors. Wetlands in the Meadowlands are managed and thus their structure and function has implication to management policies.
Hypothesis

• The Meadowlands are a CO$_2$ sink within an urban ecosystem that may offset CH$_4$ release

• The CO$_2$ fluxes depend on environmental conditions such as temperature, and light

• Changes in CO$_2$ concentration through nearby CO$_2$ sources will have consequences for ecosystem-scale processes

• CH$_4$ production and release will be coupled with CO$_2$ production and release
Materials & Methods

- Eddy covariance measurements of CO$_2$, H$_2$O, CH$_4$ (CO$_2$/H$_2$O – LI7500, CH$_4$ analyzer LI7700)
- Air temperature, humidity, light, precipitation, -continuous
- Biomass harvest
- Gas-exchange measurements on leaves
- Carbon isotope measurements of leaves where gas exchange was measured
- Soil samples for C, nutrient and metal analysis
- Chamber measurements of CH$_4$
Site

Mitigation Bank

Secaucus Highschool Marsh
Porewater vegetated area F_{CH_4}
Porewater mud flat F_{CH_4}

![Graph showing dissolved CH$_4$ concentration vs. depth](image)
Parameterization for CH$_4$ fluxes through plants requires detailed anatomical and morphological data.
Chamber F_{CH_4}

Marsh Resource Meadowlands Mitigation Bank

- Vegetated area: slope 0.012
- Mud flat: slope 0.004

CH_4 (mg m^{-3}) vs. time (minutes)
$F_{\text{CH}_4 \text{ daily}}$

Marsh Resource Meadowlands Mitigation Bank

mean – 120 mg CH$_4$ per day
F_{CH_4} response to F_{CO_2}

Marsh Resource Meadowlands Mitigation Bank

$R^2 = 0.11$

$p < 0.0001$
F_{CH_4} response to R_n

Marsh Resource Meadowlands Mitigation Bank

$R^2 = 0.16$
$p < 0.0001$
$F_{\text{CH}_4} = f(\text{pressure differential})$

Marsh Resource Meadowlands Mitigation Bank

![Graph showing data point scatter with linear regression line](image)

$R^2 = 0.04$

$p < 0.0001$
Biomass – NPP

- Actively managed area where Phragmites was eliminated in 2011
- Belowground assessment in 2011 for Spartina only
Summary

• The NJ Meadowlands are a significant CH$_4$ source, but CH$_4$ production and release seems to be only weakly correlated to environmental drivers, shows strongest correlation to CO$_2$ fluxes

• Marked differences in space and time of CH$_4$ fluxes
Acknowledgements

Help in the field was provided by
• Joe Grzyb (MERI)
• Jin Shin (MERI)

Financial support was provided by
• Meadowlands Environmental Research Institute Fellowship to K. Schäfer
• NSF CBET-1033639 (PI Schäfer, co-PI Bohrer, Mitsch, Wu)
• NSF CBET-1133275 (PI Schäfer, co-PI Jaffe)