COURSE INFORMATION (SECTION 02)

Lectures: Monday & Wednesday 10:00 - 11:20 am; Smith Hall 220; [Maps & Directions](https://www.rutgers.edu)

Office Hours: Wednesday 2:00 - 3:00 pm or by appointment galoppin@newark.rutgers.edu; Life science center 1, 3rd floor office suite 301F.

Modality: This course is delivered in person, all material is available via Canvas

Recitations for Section 02: Professor Fina Liotta, fliotta@rutgers.edu Tuesday 1:00 PM - 2:20 PM ACK-123. Recitations will be used to discuss homework problems and review lecture material.

Disclaimer: These lecture materials are protected by copyright laws. The copyright ownership of the lecture materials vests in either the Professor teaching the course, or to Rutgers University to the extent applicable. The copyright owner of the lecture materials grants you a non-exclusive and limited license only to use them for your own personal use during the course. Sharing them with others (including other students), reproducing, distributing, or posting any copyright protected part of the lecture materials elsewhere—including but not limited to any internet site—will be treated as a copyright violation and an offense against the honesty provisions of the Code of Student Conduct.

Description & Learning Objectives: Fundamental principles of organic chemistry focusing on structure, properties and reactivity of a selected group of functional groups. Emphasis will be on molecular structure of organic molecules, stereochemistry, structure and reactivity, reaction mechanisms and an introduction to spectroscopic characterization of organic compounds.

After completion of this course students should:

- Understand the structure and bonding of organic molecules
- Be familiar with structure and properties of major classes of functional groups in organic chemistry
- Be able to rationalize reactivity trends of selected functional groups
- Be familiar with selected reaction classes in organic chemistry
- Understand conformational structures, identify lower energy conformers
- Understand principles of stereochemistry, identify configuration of chiral centers
- Understand the nomenclature of selected aromatic compounds
- Recognize and assign stereochemical designations of organic compounds
- Be able to predict reactivity of functional groups
- Predict products from reactions of alkenes, alkynes, alkyl halides, dienes, alcohols and ethers based on a mechanistic understanding of these reactions and apply these reactions in multi-step syntheses and in the context of real examples of organic molecules
- Be able to interpret IR spectra of organic compounds and characterize the functional groups present in the molecules (given spectrum identify compound and vice versa predict spectrum of a compound)
INSTRUCTOR SECTION 02 INFORMATION

Instructor: Professor Elena Galoppini
Office: Life Science Center I, LSC 301d in the 3rd floor office suite
Email: galoppin@newark.rutgers.edu
Office Hours: Wednesday 2:00 - 3:00 pm
Life Science Center I, 3rd floor office suite reading room

There will be Saturday 9 am review sessions (zoom) approximately every other weekend; these will be announced in class

Recitations: Dr. Fina Liotta: fliotta@rutgers.edu

Please note: lectures cannot be recorded

IMPORTANT DATES SPRING 2022

<table>
<thead>
<tr>
<th>Event</th>
<th>2022–2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester Begins</td>
<td>Tuesday, September 6</td>
</tr>
<tr>
<td>Changes in Designation of Class Days</td>
<td>Tuesday, November 22</td>
</tr>
<tr>
<td></td>
<td>(Thursday Classes)</td>
</tr>
<tr>
<td></td>
<td>Wednesday, November 23</td>
</tr>
<tr>
<td></td>
<td>(Friday Classes)</td>
</tr>
<tr>
<td>Thanksgiving Recess</td>
<td>Thursday, November 24 -</td>
</tr>
<tr>
<td></td>
<td>Sunday, November 27</td>
</tr>
<tr>
<td>Regular Classes End</td>
<td>Wednesday, December 14</td>
</tr>
<tr>
<td>Reading Days</td>
<td>Thursday, December 15</td>
</tr>
<tr>
<td>Fall Exams Begin</td>
<td>Friday, December 16</td>
</tr>
<tr>
<td>Fall Exams End</td>
<td>Friday, December 23</td>
</tr>
</tbody>
</table>
COURSE SCHEDULE

<table>
<thead>
<tr>
<th>September</th>
<th>MO = MONDAY ; W = WEDNESDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 7 Chapter 1: Covalent Bonds & Shapes of Molecules</td>
<td></td>
</tr>
<tr>
<td>Mo 12 Chapter 1</td>
<td></td>
</tr>
<tr>
<td>W 14 Chapter 2: Alkanes & Cycloalkanes</td>
<td></td>
</tr>
<tr>
<td>Mo 19 Chapter 2</td>
<td></td>
</tr>
<tr>
<td>W 21 Chapter 3: Stereoisomerism & Chirality</td>
<td></td>
</tr>
<tr>
<td>Mo 26 Chapter 3</td>
<td></td>
</tr>
<tr>
<td>W 28 Chapter 4: Acids & Bases</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
</tr>
<tr>
<td>Mo 3 Chapter 5: Alkenes: Bonding & Properties</td>
<td></td>
</tr>
<tr>
<td>W 5 Chapter 5</td>
<td></td>
</tr>
<tr>
<td>Mo 10 Chapter 6: Reactions of Alkenes</td>
<td></td>
</tr>
<tr>
<td>W 12 Chapter 6</td>
<td></td>
</tr>
<tr>
<td>Mo 17 Exam 1 Chapters 1-6</td>
<td></td>
</tr>
<tr>
<td>W 19 Chapter 7: Alkynes</td>
<td></td>
</tr>
<tr>
<td>Mo 24 Chapter 7</td>
<td></td>
</tr>
<tr>
<td>W 26 Chapter 8: Haloalkanes & Radical Reactions</td>
<td></td>
</tr>
<tr>
<td>Mo 31 Chapter 8</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td></td>
</tr>
<tr>
<td>W 2 Chapter 9: Nucleophilic Substitution & Elimination</td>
<td></td>
</tr>
<tr>
<td>Mo 7 Chapter 9</td>
<td></td>
</tr>
<tr>
<td>W 9 Chapter 10: Alcohols</td>
<td></td>
</tr>
<tr>
<td>Mo 14 Chapter 10</td>
<td></td>
</tr>
<tr>
<td>W 16 Chapter 10</td>
<td></td>
</tr>
<tr>
<td>Mo 21 Exam 2 Chapters 7-10</td>
<td></td>
</tr>
<tr>
<td>W 23 No class Thanksgiving-- change in designation day</td>
<td></td>
</tr>
<tr>
<td>Mo 28 Chapter 11: Ethers, Sulfides, & Epoxides</td>
<td></td>
</tr>
<tr>
<td>W 30 Chapter 11</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
</tr>
<tr>
<td>Mo 5 Chapter 12: Infrared Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>W 7 Chapter 12</td>
<td></td>
</tr>
<tr>
<td>Mo 12 Chapter 12</td>
<td></td>
</tr>
<tr>
<td>W 14 REVIEW</td>
<td></td>
</tr>
<tr>
<td>Mo 19 Starts at 11:45am in Smith Hall 220 FINAL (Chapters 1-12)</td>
<td></td>
</tr>
</tbody>
</table>
GRADING POLICY

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>20%</td>
</tr>
<tr>
<td>Quizzes (Dr. Liotta, recitations)</td>
<td>20%</td>
</tr>
<tr>
<td>Final</td>
<td>40%</td>
</tr>
</tbody>
</table>

Two 80-minute midterms exams will count for 40% of the course grade, recitation quizzes will count for 20% and a comprehensive final exam will count for 40% of the course grade. All exams are in person and are closed book, no notes.

Make-up policy: The final exam, which is cumulative, will serve as the make-up exam for any student who is absent from Midterm 1 or 2 with a valid excuse.

Letter grades will be assigned according to the following scale (scores are percentages of the maximum possible points):

- A (100-85), B+ (84-80), B (79-70), C+ (69-65), C (64-55), D (54-50), F (49-0)

ABOUT MIDTERMS 1 & 2

a) The 2 eighty-minute midterms will cover selected chapters
b) Each midterm will consist of 40 multiple-choice questions (1 point per question, only 1 answer choice for each question is correct, no open ended questions, 4 choices each question) + 4 bonus questions (44 total). In each exam the score will be normalized to 40 questions. Example: if someone scores all 44, this counts as 44/40 = 110%, if someone scores 30 of the 44 then it is 30/40 = 75%.

ABOUT THE FINAL

a) The final examination is comprehensive (= all chapters)
c) The final will consist of 40 multiple-choice questions (1 point per question, only 1 answer choice for each question is correct, no open ended questions, 4 choices each question) + 4 bonus questions (44 total). The score will be normalized to 40 questions. (Example: if someone scores all 44, this counts as 44/40 = 110%, if someone scores 30 of the 44 then it is 30/40 = 75%)

ABOUT THE QUIZZES (administered by Dr. Liotta)

20% of the final score from recitation quizzes. All quizzes are administered in person during recitations by Prof. Fina Liotta who will communicate the format and the schedule.
TEXTBOOK & OTHER RESOURCES

Required Textbook:
- The problems are identical in the 7th edition in case you want to save $ on the solutions manual.

publisher’s mini-site for the 8th edition of the text book:

Recommended Molecular model kit:
https://ochemkit.com/index.html:
it is recommended. You can bring it to the exams but must be in a transparent plastic bag.

Other Resources that will be shared:
- Powerpoints used in class and handwritten notes will be made available ahead of each lecture on Canvas
- Chapter summaries will be available in Canvas
- A studyguide will be provided a week prior to each exam.

Recommended Test Banks:
Make sure that you cover all sample multiple-choice questions that are included in the lecture slides. Additional resources for multiple-choice questions are below:
https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Questions/problems/indexam.htm
https://www.sanfoundry.com/1000-organic-chemistry-questions-answers/
https://global.oup.com/uk/orc/chemistry/okuyama/student/mcqs/
https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/questions/problems.htm

Useful Websites (see also in Canvas):
- https://www.name-reaction.com/list
- https://www.organic-chemistry.org/namedreactions/
- https://www.masterorganicchemistry.com/
- https://organicchemistrydata.org/

SOME COURSE RULES
- Please be punctual: classes start at 10:00 pm exactly.
- Emails must be professional: emails that do not have salutation, closure and signature will be completely ignored.
SUGGESTED END OF CHAPTER HOMEWORK PROBLEMS FROM TEXTBOOK

Homework will not be graded but selected problems will be in exams.

Ch 1: 1-7,13-19,20,21,23,25-29,32,37,38,51,52,55,57,60

Ch 2: 1-10,12-15,16,20,21,26,27,28,32,34,42,48,58,60

Ch 3: 1-8,13,14,16-19,22,23,26,27,30,31,37

Ch 4: 1-6,8,9,10,12,15,16,17,20,22,26,32,34

Ch 5: 3-11,13,14,16,18,29,35

Ch 6: 2-10,12,13,15-19,23,24,30,34,37,39,40,42,45,46

Ch 7: 1-8,10-14,16,17,20,23

Ch 8: 1,2,5-15,29,30,32

Ch 9: 1-13,15,17,18,20,22,25,26,28,30,34,37,38,43-45,47,51,56,58

Ch 10: 1-16,18-21,23,26,28-33,34,35,38,40,45,54,55

Ch 11: 1-8,10-12,15-17,21,23,27,31,33,34,44

Ch 12: 1-8,9,11

HELP!

- *Help!* If you need assistance, study tips, or have questions about the course material or homework problems, see Dr. Galoppini and Dr. Liotta during office hours, make an appointment to see them at times other than office hours, or contact the Learning Center for other options.

- The Learning Resource Center in Conklin Hall can provide various types of assistance:

- *Free Tutoring.* If there are enough requests at the Learning Resource Center for tutors, free tutoring will be provided.

- *Learning Assistants.* If you would like advice on how to develop better study habits and skills, make an appointment with a learning assistant at the Learning Resource Center.

ACADEMIC POLICIES AND PROCEDURES

Attendance Policy.

- Not attending class is a bad, bad idea. Classes will NOT be recorded.

- Please, review Rutgers University attendance policy, which can be found at http://policies.rutgers.edu/view-policies/academic-%E2%80%93-section-10#2

- You are responsible for material covered in any class that you do not attend. If you miss a class, you must contact a classmate or me for the missed information. If you have a situation that might cause you to miss an entire week of class, discuss it with me as soon as possible.

This course adheres to Rutgers University policies on academic integrity. Please see: http://academicintegrity.rutgers.edu/academic-integrity-policy and http://academicintegrity.rutgers.edu/resources-for-students/

STUDENT CODE OF CONDUCT

Students are required to adhere to the University Student Code of Conduct delineated in the Rutgers Student Affairs website Student Conduct page: http://studentconduct.rutgers.edu/student-conduct-processes/university-code-of-student-conduct/#1495568095620-2f5ce77d-17dd
STUDENT SUPPORT SERVICES AND ACCOMMODATIONS

Rutgers University Newark (RU-N) is committed to the creation of an inclusive and safe learning environment for all students and the University as a whole. RU-N has identified the following resources to further the mission of access and support:

For Individuals with Disabilities: The Office of Disability Services (ODS) is responsible for the determination of appropriate accommodations for students who encounter barriers due to disability. Once a student has completed the ODS process (registration, initial appointment, and submitted documentation) and reasonable accommodations are determined to be necessary and appropriate, a Letter of Accommodation (LOA) will be provided. The LOA must be given to each course instructor by the student and followed up with a discussion. This should be done as early in the semester as possible as accommodations are not retroactive. More information can be found at ods.rutgers.edu. Contact ODS at (973)353-5375 or via email at ods@newark.rutgers.edu.

For Individuals who are Pregnant: The Office of Title IX and ADA Compliance is available to assist with any concerns or potential accommodations related to pregnancy. Students may contact the Office of Title IX and ADA Compliance at (973) 353-1906 or via email at TitleIX@newark.rutgers.edu.

For Absence Verification: The Office of the Dean of Students can provide assistance for absences related to religious observance, emergency or unavoidable conflict (e.g., illness, personal or family emergency, etc.). Students should refer to University Policy 10.2.7 for information about expectations and responsibilities. The Office of the Dean of Students can be contacted by calling (973) 353-5063 or emailing deanofstudents@newark.rutgers.edu.

For Individuals with temporary conditions/injuries: The Office of the Dean of Students can assist students who are experiencing a temporary condition or injury (e.g., broken or sprained limbs, concussions, or recovery from surgery). Students experiencing a temporary condition or injury should submit a request using the following link: https://temporaryconditions.rutgers.edu.

For English as a Second Language (ESL): The Program in American Language Studies (PALS) can support students experiencing difficulty in courses due to English as a Second Language (ESL) and can be reached by emailing PALS@newark.rutgers.edu to discuss potential supports.

For Gender or Sex-Based Discrimination or Harassment: The Office of Title IX and ADA Compliance can assist students who are experiencing any form of gender or sex-based discrimination or harassment, including sexual assault, sexual harassment, relationship violence, or stalking. Students can report an incident to the Office of Title IX and ADA Compliance by calling (973) 353-1906 or emailing TitleIX@newark.rutgers.edu. Incidents may also be reported by using the following link: tinyurl.com/RUNReportingForm. For more information, students should refer to the University’s Student Policy Prohibiting Sexual Harassment, Sexual Violence, Relationship Violence, Stalking and Related Misconduct located at http://compliance.rutgers.edu/title-ix/about-title-ix/title-ix-policies/.

For support related to interpersonal violence: The Office for Violence Prevention and Victim Assistance can provide any student with confidential support. The office is a confidential resource and does not have an obligation to report information to the University’s Title IX Coordinator. Students can contact the office by calling (973) 353-1918 or emailing
run.vpva@rutgers.edu. There is also a confidential text-based line available to students; students can text (973) 339-0734 for support.

For Crisis and Concerns: The Campus Awareness Response and Education (CARE) Team works with students in crisis to develop a support plan to address personal situations that might impact their academic performance. Students, faculty and staff may contact the CARE Team by using the following link: tinyurl.com/RUNCARE or emailing careteam@rutgers.edu.

For Stress, Worry, or Concerns about Well-being: The Counseling Center has confidential therapists available to support students. Students should reach out to the Counseling Center to schedule an appointment: counseling@newark.rutgers.edu or (973) 353-5805. If you are not quite ready to make an appointment with a therapist but are interested in self-help, check out TAO at Rutgers-Newark for an easy, web-based approach to self-care and support: https://tinyurl.com/RUN-TAO.

For emergencies, call 911 or contact Rutgers University Police Department (RUPD) by calling (973) 353-5111.

Academic Services:
- For academic support visit Rutgers Academics Student Support at https://www.rutgers.edu/academics/student-support
- Any student can obtain tutoring and other help at the Learning Centers on each campus. Check the website at https://rlc.rutgers.edu/
- For coaching help with writing skills and assignments visit the Writing Coaching webpage at https://rlc.rutgers.edu/student-services/writing-coaching
- Many library resources are available online. Assistance is available through phone, email, and chat. For information, check the Rutgers Libraries website at https://www.libraries.rutgers.edu/

Rutgers Student Health Services:
For more information visit: http://health.rutgers.edu/

Veteran Services:
Please visit the Office of Veteran and Military Programs and Services website for more information: https://veterans.rutgers.edu/
Outline of lectures. Content will be refined as we progress in the course (for instance what reactions to focus on and what reactions to skip)

1 COVALENT BONDING AND SHAPES OF MOLECULES p. 1

1.1 Electronic Structure of Atoms 2
1.2 Lewis Model of Bonding 7

HOW TO: Quickly Figure Out Formal Charge 15
HOW TO: Draw Lewis Structures from Condensed Structural Formulas 17

1.3 Functional Groups 19
1.4 Bond Angles and Shapes of Molecules 24
1.5 Polar and Nonpolar Molecules 27

MCAT Practice: Passage and Questions Fullerenes 27

1.6 Quantum or Wave Mechanics 29 the basics
1.7 A Combined Valence Bond and Molecular Orbital Theory Approach to Covalent Bonding 32

Connections to Biological Chemistry Phosphoesters 40

HOW TO: Quickly Recognize the Hybridization and Geometry of Atoms 45

1.8 Resonance 45
HOW TO: Draw Curved Arrows and Push Electrons in Creating Contributing Structures 46

1.9 Molecular Orbitals for Delocalized Systems 51
MCAT Practice: Passage and Questions VSEPR and Resonance 55

1.10 Bond Lengths and Bond Strengths in Alkanes, Alkenes, and Alkynes 56

2 ALKANES AND CYCLOALKANES p.72

2.1 The Structure of Alkanes 73
2.2 Constitutional Isomerism in Alkanes 74
2.3 Nomenclature of Alkanes and the IUPAC System 77
2.4 Cycloalkanes 82
2.5 Conformations of Alkanes and Cycloalkanes 85

HOW TO: Draw Alternative Chair Conformations of Cyclohexane 96
2.6 Cis,Trans Isomerism in Cycloalkanes and Bicycloalkanes 99

HOW TO: Convert Planar Cyclohexanes to Chair Cyclohexanes 100
MCAT Practice: Passage and Questions Tetrodotoxin 105

2.7 Physical Properties of Alkanes and Cycloalkanes 107
2.8 Reactions of Alkanes 110

2.9 Sources and Importance of Alkanes 112

Chemical Connections Octane Rating: What Those Numbers at the Pump Mean 114

3 STEREOISOMERISM AND CHIRALITY p. 127

3.1 Chirality—The Handedness of Molecules 128
3.2 Stereoisomerism 129

HOW TO: Draw Chiral Molecules 130

3.3 Naming Chiral Centers—The R,S System 134

HOW TO: Assign R or S Configuration to a Chiral Center 136

3.4 Acyclic Molecules with Two or More Stereocenters 137

HOW TO: Quickly Draw and Recognize Enantiomers and Diastereomers 143
3.5 Cyclic Molecules with Two or More Chiral Centers 144
3.6 Tying All the Terminology Together 147
3.7 Optical Activity—How Chirality Is Detected in the Laboratory 149
3.8 The Significance of Chirality in the Biological World 153
 Connect ions to Biolo gical Chemist ry Chiral Drugs 155
 MCAT Pract ice: Passa ge and Quest ions Amino Acid Stereochemistry 155
3.9 Separation of Enantiomers—Resolution 157

4 ACIDS AND BASES p.170
4.1 Arrhenius Acids and Bases 170
4.2 Brønsted-Lowry Acids and Bases 171
4.3 Acid Dissociation Constants, pKa, and the Relative Strengths of Acids and Bases 178
4.4 The Position of Equilibrium in Acid-Base Reactions 180
 HOW TO: Calculate the Equilibrium Constants for Acid-Base Reactions 181
 Connect ions to Biolo gical Chemist ry The Ionization of Functional Groups at Physiological pH 183
4.5 Thermochemistry and Mechanisms of Acid-Base Reactions 184
4.6 Molecular Structure and Acidity 188
 MCAT Pract ice: Passa ge and Quest ions Acid-Base Equilibria 193
4.7 Lewis Acids and Bases 193

5 ALKENES: BONDING, NOMENCLATURE, AND PROPERTIES 206
5.1 Structure of Alkenes 208
 HOW TO: Calculate the Index of Hydrogen Deficiency 208
5.2 Nomenclature of Alkenes 211
5.3 Physical Properties of Alkenes 217
 Chemical Connect ions The Case of the Iowa and New York Strains of the European Corn Borer 217
5.4 Naturally Occurring Alkenes—Terpene Hydrocarbons 218 the basics
 Connect ions to Biolo gical Chemist ry The Importance of Cis Double Bonds in Fats Versus Oils 220
Things You Should Know II: Nucleophiles and Electrophiles 228
Things You Should Know III: Reaction Mechanisms 232

6 REACTIONS OF ALKENES p. 240
6.1 Reactions of Alkenes—An Overview 241
6.2 Organic Reactions Involving Reactive Intermediates 242
6.3 Electrophilic Additions 244
6.4 Hydroborration-Oxidation 264
6.5 Oxidation 268
 HOW TO: Write a Balanced Half-Reaction 270
6.6 Reduction 273
 Connect ions to Biolo gical Chemist ry Trans Fatty Acids: What They Are and How to Avoid Them 276
6.7 Molecules Containing Chiral Centers as Reactants or Products 277

7 ALKYNES 297
7.1 Structure of Alkynes 298
7.2 Nomenclature of Alkynes 298
7.3 Physical Properties of Alkynes 300
7.4 Acidity of 1-Alkynes 301
7.5 Preparation of Alkynes 301
7.6 Electrophilic Addition to Alkynes 305
7.7 Hydration of Alkynes to Aldehydes and Ketones 307
7.8 Reduction of Alkynes 312
7.9 Organic Synthesis 314

8 HALOALKANES, HALOGENATION, AND RADICAL REACTIONS 330
8.1 Structure 331
8.2 Nomenclature 331
8.3 Physical Properties of Haloalkanes 332
8.4 Preparation of Haloalkanes by Halogenation of Alkanes 336
8.5 Mechanism of Halogenation of Alkanes 340

MCAT Practice: Passages and Questions Antioxidants 354
8.6 Allylic Halogenation 348
8.7 Radical Autoxidation 353

MCAT Practice: Passages and Questions Antioxidants 354
8.8 Radical Addition of HBr to Alkenes 356
Study Guide 359 Problems 363
Things You Should Know IV: Common Mistakes in Arrow Pushing 369

9 NUCLEOPHILIC SUBSTITUTION AND β-ELIMINATION 374
9.1 Nucleophilic Substitution in Haloalkanes 376
9.2 Mechanisms of Nucleophilic Aliphatic Substitution 377

MCAT Practice: Passages and Questions Solvents and Solvation 417
9.3 Experimental Evidence for SN1 and SN2 Mechanisms 381
9.4 Analysis of Several Nucleophilic Substitution Reactions 397
9.5 β-Elimination 400
9.6 Mechanisms of β-Elimination 402
9.7 Experimental Evidence for E1 and E2 Mechanisms 404
9.8 Substitution Versus Elimination 410
9.9 Analysis of Several Competitions Between Substitutions and Eliminations 415

MCAT Practice: Passages and Questions Solvents and Solvation 417
9.10 Neighboring Group Participation 418

Connections to Biological Chemistry Mustard Gases and the Treatment of Neoplastic Diseases 420
Study Guide 422 Problems 427

10 ALCOHOLS 437
10.1 Structure and Nomenclature of Alcohols 438
10.2 Physical Properties of Alcohols 441
Connect ions to Biological Chemistry: The Importance of Hydrogen Bonding in Drug-Receptor Interactions 442

10.3 Acidity and Basicity of Alcohols 445
10.4 Reaction of Alcohols with Active Metals 446
10.5 Conversion of Alcohols to Haloalkanes and Sulfonates 447
10.6 Acid-Catalyzed Dehydration of Alcohols 454
10.7 The Pinacol Rearrangement 459

MCAT Practice: Passage and Questions Pinacol Rearrangement 463

10.8 Oxidation of Alcohols 463

Chemical Connect ions: Blood Alcohol Screening 466

Connect ions to Biological Chemistry: The Oxidation of Alcohols by NAD1 470

MCAT Practice: Passage and Questions Alcohol Oxidations 472

10.9 Thiols 473

11 ETHERS, EPOXIDES, AND SULFIDES 492

11 Ethers, Epoxides, and Sulfides 492

11.1 Structure of Ethers 493
11.2 Nomenclature of Ethers 493
11.3 Physical Properties of Ethers 494
11.4 Preparation of Ethers 496

11.5 Reactions of Ethers 500

11.6 Silyl Ethers as Protecting Groups 503
11.7 Epoxides: Structure and Nomenclature 505
11.8 Synthesis of Epoxides 505
11.9 Reactions of Epoxides 510

MCAT Practice: Passage and Questions Benzo[a]pyrene 513

11.10 Ethylene Oxide and Epichlorohydrin: Building Blocks in Organic Synthesis 515

11.11 Crown Ethers 517
11.12 Sulfides 518

12 INFRARED SPECTROSCOPY 535

12.1 Electromagnetic Radiation 535
12.2 Molecular Spectroscopy 536
12.3 Infrared Spectroscopy 537

Focus on:
12.4 Interpreting Infrared Spectra 543
12.5 Solving Infrared Spectral Problems 552