DR. THOMAS MILLER

Division of Chemistry and Chemical Engineering,
California Institute of Technology,
Pasadena, CA

“GETTING SOMETHING FOR NOTHING: CLASSICAL AND MACHINE-LEARNING METHODS FOR QUANTUM SIMULATION”

September 18th, 2020 ~ 11:30AM
Seminar via Zoom

Abstract: A focus of our research is to develop simulation methods that reveal the mechanistic details of quantum mechanical reactions that are central to biological, molecular, and heterogeneous catalysis. The nature of this effort is three-fold: we combine quantum statistical mechanics and semiclassical dynamics methods to expand the scope and reliability of condensed-phase quantum dynamics simulation; we develop quantum embedding and machine learning methods that improve the description of molecular interactions and electronic properties; and we apply these methods to understand complex chemical systems. The talk will focus on recent developments and applications of these methods for the description of molecule-graphene collisions [1]. Additionally, we will describe a machine-learning approach to predicting the electronic structure results on the basis of simple molecular-orbitals-based (MOB) properties, yielding striking accuracy and transferability across chemical systems at low computational cost [2,3].

References