Research Initiatives

Synthesis-enabled exploration of uncharted areas of phase space Such compounds are traditionally difficult to synthesize with high purity due to vastly different reactivities of the elements or are thermally inaccessible. The Akopov group will focus on forming phases by starting with an adaptable yet stable solid-state substrate (precursor) and reacting it with the volatile inorganic synthon to form complex multinary intemetallics and explore pnictides and chalcogenides of metal boride and carbides. These phases possess stable motifs that can be sequentially modified for enhanced magnetic, thermoelectric and non-linear optical properties.Superhardness in metal borocarbides through crystal structure tuningThe focus is on the exploration of the crystal chemistry and mechanical properties (superhardness) of mixed metal borocarbides. Such phases bridge the gap between metal borides and carbides due to the synergy of structural boron and carbon. A formation of heteroanionic B-C bonds in addition to homoanionic B-B and C-C bonds allows to control of the B-C layer geometry by changing the amount of B and C or the metal, which affects the size and shape of the nonmetal polygon above and below the metal. Furthermore, in addition to mechanical properties, such phases are interesting in magnetic, superconductor and catalytic applications.Rediscovering multinary sulfides for photocatalysisThe goal is to design multinary phases for efficient photocatalysis for pollutant degradation, water splitting and fuel generation. Many metal tetrel pnictides and chalcogenides have band gaps in the visible range or larger which makes them very good in application of water splitting reactions. Such phases allow for a remarkable tunability of the band gap through minute changes of the composition, using transition metals with different oxidation states and coordination environments.


  • 2019 Spedding Postdoctoral Fellowship, Ames National Lab                                                                      
  • 2018 ACS Division of Inorganic Chemistry Young Investigator Award                                                 
  • 2018 Dissertation Year Fellowship, UCLA                                                                                                   
  • 2018 Inorganic Chemistry Dissertation Award, UCLA                                                                                  
  • 2018 Faculty Award for Innovation in Inorganic Chemistry, UCLA                                                                     
  • 2017 ACS UCLA Research Showcase Fellowship, UCLA                                                               
  • 2014 Harold A. Fales Memorial Award, Rutgers University-Newark                                                                         
  • 2012 Phi Theta Kappa Honor Society Scholarship, Rutgers University-Newark     


Inorganic, Materials and Solid-State Chemistry

Related Websites