Dimitrios Ntarlagiannis

Dimitrios Ntarlagiannis


dimntar [at] rutgers.edu



Office Location

101 Warren Street,
Smith Hall Room 135
Newark, New Jersey, 07102

Field of specialization:  Near surface geophysics / Biogeophysics

Research Interests:

  • Near surface geophysics for environmental, hydrological, engineering and biological applications
  • GIS

Courses Taught

  • Environmental Economics (21:460:428)
  • Natural Disasters (21:460:203)
  • Geological Field Problems (21:460:311)
  • Rocks and Minerals (21:460:323)
  • Structural Geology (21:460:320)
  • Planet Earth (21:460:103)
  • Environmental Disasters (21:460:215)
  • Introduction to GIS (21:460:325)
  • Hydrogeophysics (26:380:510) - Graduate level
  • Introduction to GIS (21:375:602) - Graduate level


2006 - PhD in Environmental Sciences (Rutgers University)

2001 – MSc in Environmental Geology (Aristotle University of Thessaloniki)

1998 – BSc in Geology (Aristotle University of Thessaloniki)


Zotero profile (most up to date)


Books and Chapters

    1. Kalderis, D., Ntarlagianns D. and Soupios P. “Non-soil biochar applications”, publisher Nova Science Publishers

    2. Soupios, P. and Ntarlagiannis, D. “Characterization and Monitoring of Solid Waste Disposal Sites Using Geophysical Methods: Current Applications and Novel Trends”, in Modelling Trends in Solid and Hazardous Waste Management (2017): 75–103.

    3. Ntarlagiannis, D. “Electrical Geophysical Methods for Environmental Applications” in, Geologic Diversity in the New York Metropolitan Area 88, (2016)

Peer reviewed Journals
* student first author that I am the primary adviser

    1. *Kimak, C., Ntarlagiannis, D., Slater, L. D., Atekwana, E. A., Beaver, C. L., Rossbach, S., et al. (2019). Geophysical monitoring of hydrocarbon biodegradation in highly conductive environments. JGR-Biogeosciences. https://doi.org/10.1029/2018JG004561
    2. *Saneiyan, S., Ntarlagiannis, D., Ohan, J., Lee, J., Colwell, F., & Burns, S. (2019). Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes. Ecological Engineering, 127, 36–47. https://doi.org/10.1016/j.ecoleng.2018.11.010
    3. Sharma, S., Slater, L., Ntarlagiannis, D., Werkema, D., & Szabo, Z. (2017). Specific polarizability of sand-clay mixtures with varying ethanol concentration. Near Surface Geophysics, 15(6), 615–624. https://doi.org/10.3997/1873-0604.2017049
    4. *Saneiyan S., D. Ntarlagiannis, D. D. Werkema Jr. , A. Ustra (2018), Geophysical methods for monitoring soil stabilization processes, Journal of Applied Geophysics, 148, 234–244. https://doi.org/10.1016/j.jappgeo.2017.12.008
    5. Lund, A. L., Slater, L. D., Atekwana, E. A., Ntarlagiannis, D., Cozzarelli, I., & Bekins, B. A. (2017). Evidence of Coupled Carbon and Iron Cycling at a Hydrocarbon-Contaminated Site from Time Lapse Magnetic Susceptibility. Environmental Science & Technology, 51(19), 11244–11249. https://doi.org/10.1021/acs.est.7b02155
    6. *Heenan, J. W., D. Ntarlagiannis, L. D. Slater, C. L. Beaver, S. Rossbach, A. Revil, E. A. Atekwana, and B. Bekins (2017), Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill, J. Geophys. Res. Biogeosci., 122(4), 2016JG003596, doi:10.1002/2016JG003596.
    7. Elwaseif, M., J. Robinson, F. D. Day-Lewis, D. Ntarlagiannis, L. D. Slater, J. W. Lane, B. J. Minsley, and G. Schultz (2017), A matlab-based frequency-domain electromagnetic inversion code (FEMIC) with graphical user interface, Computers & Geosciences, 99, 61–71, doi:10.1016/j.cageo.2016.08.016.
    8. Soupios, P., Kavvadias, V., Huddersman, K., Sdao, F., and Ntarlagiannis, D. “Integrated Approaches to Soil Contamination Monitoring” Applied and Environmental Soil Science 2016, (2016): 1–2. doi:10.1155/2016/5192691
    9. Ntarlagiannis, D., Doherty, R., Costa, R., Williams, K. H., Zhang, C., and Soupios, P. “Introduction to Special Section: Characterization and Monitoring of Subsurface Contamination” Interpretation 3, no. 4 (2015): SABi–SABii. doi:10.1190/INT2015-0917-SPSEINTRO.1
    10. Briggs, M. A., S. Campbell, J. Nolan, M. A. Walvoord, D. Ntarlagiannis, F. D. Day-Lewis, and J. W. Lane (2016), Surface geophysical methods for characterizing the active layer and shallow permafrost features, Permafr. Periglac. Process., doi:10.1002/ppp.1893.
    11. Hao, N., S. M. J. Moysey, B. A. Powell, and D. Ntarlagiannis (2016), Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid–base titration, J. Appl. Geophys., 1–9, doi:10.1016/j.jappgeo.2016.01.014.
    12. Ntarlagiannis, D., J. Robinson, P. Soupios, and L. Slater (2016), Field-scale electrical geophysics over an olive oil mill waste deposition site: Evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination, J. Appl. Geophys., 62, 51–60, doi:10.1016/j.jappgeo.2016.01.017.
    13. Ustra, A., C. A. Mendonça, D. Ntarlagiannis, and L. D. Slater (2016), Relaxation time distribution obtained from a Debye decomposition of spectral induced polarization data, GEOPHYSICS, 81(2), E129–E138, doi:10.1190/geo2015-0095.1.
    14. Hao, N., Moysey, S.M.J., Powell, B.A., Ntarlagiannis, D., 2015. Evaluation of Surface Sorption Processes Using Spectral Induced Polarization and a 22 Na Tracer. Environ. Sci. Technol. 49, 9866–9873. doi:10.1021/acs.est.5b01327
    15. *Heenan, J., L. D. Slater, D. Ntarlagiannis, E. A. Atekwana, B. Z. Fathepure, S. Dalvi, C. Ross, D. D. Werkema, and E. A. Atekwana (2015), Electrical resistivity imaging for long-term autonomous monitoring of hydrocarbon degradation: Lessons from the Deepwater Horizon oil spill, GEOPHYSICS, 80(1), B1–B11, doi:10.1190/geo2013-0468.1.
    16. *Heenan, J., A. Porter, D. Ntarlagiannis, L. Y. Young, D. D. Werkema, and L. D. Slater (2013), Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes, GEOPHYSICS, 78(5), E261–E269, doi:10.1190/geo2013-0085.1.
    17. Mewafy, F. M., D. D. Werkema, E. A. Atekwana, L. D. Slater, G. Abdel Aal, A. Revil, and D. Ntarlagiannis (2013), Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site, J. Appl. Geophys., 98, 113–123, doi:10.1016/j.jappgeo.2013.08.011.
    18. Personna, Y. R., L. Slater, D. Ntarlagiannis, D. Werkema, and Z. Szabo (2013a), Complex resistivity signatures of ethanol biodegradation in porous media, J. Contam. Hydrol., 153, 37–50, doi:10.1016/j.jconhyd.2013.07.005.
    19. Personna, Y. R., L. Slater, D. Ntarlagiannis, D. Werkema, and Z. Szabo (2013b), Complex resistivity signatures of ethanol in sand-clay mixtures., J. Contam. Hydrol., 149, 37–50, doi:10.1016/j.jconhyd.2013.03.005.
    20. Personna, Y. R., L. Slater, D. Ntarlagiannis, D. Werkema, and Z. Szabo (2013c), Electrical signatures of ethanol–liquid mixtures: Implications for monitoring biofuels migration in the subsurface, J. Contam. Hydrol., 144(1), 99–107, doi:10.1016/j.jconhyd.2012.10.011.
    21. Placencia-Gómez, E., L. Slater, D. Ntarlagiannis, and A. Binley (2013), Laboratory SIP signatures associated with oxidation of disseminated metal sulfides, J. Contam. Hydrol., 148, 25–38, doi:10.1016/j.jconhyd.2013.02.007.
    22. Johnson, T. C., R. J. Versteeg, M. Rockhold, L. D. Slater, D. Ntarlagiannis, W. J. Greenwood, and J. Zachara (2012a), Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints, GEOPHYSICS, 77(6), EN85–EN96, doi:10.1190/geo2012-0121.1.
    23. Johnson, T. C., L. D. Slater, D. Ntarlagiannis, F. D. Day-Lewis, and M. Elwaseif (2012b), Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes, Water Resour. Res., 48(7), n/a–n/a, doi:10.1029/2012WR011893.
    24. Mwakanyamale, K., L. Slater, A. Binley, and D. Ntarlagiannis (2012), Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area, GEOPHYSICS, 77(6), E397–E409, doi:10.1190/geo2011-0407.1.
    25. Parsekian, A. D., L. D. Slater, D. Ntarlagiannis, J. Nolan, S. D. Sebesteyent, and R. K. Kolka (2012), Uncertainty in Peat Volume and Soil Carbon Estimated Using Ground-Penetrating Radar and Probing, Wetl. Soils, doi:10.2136/sssaj2012.0040.
    26. Ustra, A., L. Slater, D. Ntarlagiannis, and V. Elis (2012), Spectral Induced Polarization (SIP) signatures of clayey soils containing toluene, Near Surf. Geophys., doi:10.3997/1873-0604. 2012015.
    27. Hiemstra, J. F., B. Kulessa, E. C. King, and D. Ntarlagiannis (2011), The use of integrated sedimentological and geophysical methods in drumlin research - a case study of Pigeon Point, Clew Bay, Northwest Ireland, Earth Surf. Process. Landforms, 36(14), 1860–1871, doi:10.1002/esp.2207.
    28. Mewafy, F. M., E. a. Atekwana, D. D. Werkema, L. D. Slater, D. Ntarlagiannis, A. Revil, M. Skold, and G. N. Delin (2011), Magnetic susceptibility as a proxy for investigating microbially mediated iron reduction, Geophys. Res. Lett., 38(21), 1–5, doi:10.1029/2011GL049271.
    29. Ntarlagiannis D., R. Doherty, and K. H. Williams (2010), Spectral induced polarization signatures of abiotic FeS precipitation, GEOPHYSICS, 75(4), F127–F133, doi:10.1190/1.3467759.
    30. Slater, L. D., D. Ntarlagiannis, F. D. Day-Lewis, K. Mwakanyamale, R. J. Versteeg, A. Ward, C. Strickland, C. D. Johnson, and J. W. Lane (2010), Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington, Water Resour. Res., 46(10), 1–13, doi:10.1029/2010WR009110.
    31. Weller, A., L. Slater, S. Nordsiek, and D. Ntarlagiannis (2010), On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets, GEOPHYSICS, 75(4), WA105–WA112, doi:10.1190/1.3471577.
    32. Zhang, C., D. Ntarlagiannis, L. Slater, and R. Doherty (2010), Monitoring microbial sulfate reduction in porous media using multipurpose electrodes, J. Geophys. Res., 115, 1–11, doi:10.1029/2009JG001157.
    33. Ntarlagiannis D., and A. Ferguson (2009), SIP response of artificial biofilms, Geophysics, 74(1), 1–5, doi:10.1190/1.3031514.
    34. Slater, L. D., F. D. Day-Lewis, D. Ntarlagiannis, M. O’Brien, and N. Yee (2009), Geoelectrical measurement and modeling of biogeochemical breakthrough behavior during microbial activity, Geophys. Res. Lett., 36(14), 1–5, doi:10.1029/2009GL038695.
    35. Personna, Y. R., D. Ntarlagiannis, L. Slater, N. Yee, M. O’Brien, and S. Hubbard (2008), Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations, J. Geophys. Res., 113(G2), 1–13, doi:10.1029/2007JG000614.
    36. Slater, L., D. Ntarlagiannis, N. Yee, M. O’Brien, C. Zhang, and K. H. Williams (2008), Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity, GEOPHYSICS, 73(2), F65–F70, doi:10.1190/1.2828977.
    37. Ntarlagiannis D., E. a. Atekwana, E. a. Hill, and Y. Gorby (2007), Microbial nanowires: Is the subsurface “hardwired”?, Geophys. Res. Lett., 34(17), doi:10.1029/2007GL030426.
    38. Slater, L., D. Ntarlagiannis, Y. R. Personna, and S. Hubbard (2007a), Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations, Geophys. Res. Lett., 34(21), 3–7, doi:10.1029/2007GL031840.
    39. Slater, L., X. Comas, D. Ntarlagiannis, and M. R. Moulik (2007b), Resistivity-based monitoring of biogenic gases in peat soils, Water Resour. Res., 43(10), 1–13, doi:10.1029/2007WR006090.
    40. Slater, L., D. Ntarlagiannis, and D. Wishart (2006), On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures, GEOPHYSICS, 71(2), A1–A5, doi:10.1190/1.2187707.
    41. Ntarlagiannis D., K. H. Williams, L. Slater, and S. Hubbard (2005a), Low-frequency electrical response to microbial induced sulfide precipitation, J. Geophys. Res., 110(G2), doi:10.1029/2005JG000024.
    42. Ntarlagiannis D., N. Yee, and L. Slater (2005b), On the low-frequency electrical polarization of bacterial cells in sands, Geophys. Res. Lett., 32(24), 2–5, doi:10.1029/2005GL024751.
    43. Williams, K. H., D. Ntarlagiannis, L. D. Slater, A. Dohnalkova, S. S. Hubbard, and J. F. Banfield (2005), Geophysical imaging of stimulated microbial biomineralization., Environ. Sci. Technol., 39(19), 7592–600.

Review Articles
1. Ntarlagiannis, D., Ustra, A., Kessouri, P., & Flores-Orozco, A. (2018). The Untapped Potential of the Induced Polarization Method: Characterizing and Monitoring Hydrocarbon Contamination in Soils. FastTimes, 23, 10.

1. Slater, L., Ntarlagiannis, D., Curatola, F., Pappas, D., Le Roy, D., & Evdokimov, K. (2013). Intelligent Spectral Induced Polarization Measurement Module. US Patent App. 14/ 85,789

Blog posts

1. Barr, J., & Ntarlagiannis, D. (2017). The tides of Northern New Jersey residential prices since the crash and Sandy. Retrieved from http://www.rutgersrealestate.com/blog-re/bubble-or-surge-which-was-worse-for-housing/